If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-134x+161=0
a = 25; b = -134; c = +161;
Δ = b2-4ac
Δ = -1342-4·25·161
Δ = 1856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1856}=\sqrt{64*29}=\sqrt{64}*\sqrt{29}=8\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-134)-8\sqrt{29}}{2*25}=\frac{134-8\sqrt{29}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-134)+8\sqrt{29}}{2*25}=\frac{134+8\sqrt{29}}{50} $
| -3.5x=0 | | F(-3)=3x-19 | | 6x-4+2(5x+2)=26x | | 10x-(7x-5)=20 | | 2x+18+x-6=90 | | 6x+7+119=180 | | 3x+6+3x+12+6x=90 | | 3x6+3x+12+6x=90 | | M=15n=300 | | 3x+6+3x+12+6x=30 | | y-93=16 | | 3a-5/a=4 | | 2a=1/2a+21 | | 125x=1/5 | | 91=1/2(12x7)(12+B) | | 2^2x+1+9*2^x+4=0 | | 105=3.a | | (4x+8)+(2x-5)=39 | | -18+3z+23-19z+7z=0 | | 23x-12=6x+5 | | 55x+20=75x | | 7.3-n=1.3 | | Y-5=3x+2 | | 40-3d=10 | | 4n-49=7(-2n+2 | | 29-3d=-7 | | 6^t=8 | | O.17x-0.03=0.03x-0.002 | | 5(6-3x)+20=6+7x | | 5.5-7=4x-1 | | (3)=5x-4 | | 6t+2*204=600 |